FIR-filtre, IIR-filtre, og den lineære konstant-koeffisient differens-ekvationen Causal Moving Average (FIR) - filtre Weve diskuterte systemer der hver prøve av utgangen er en vektet sum av (visse av) prøvene av inngangen. La oss ta et årsaksvektet sumssystem, hvor årsakssammenheng betyr at en gitt utgangsprøve bare avhenger av gjeldende inngangseksempel og andre innganger tidligere i sekvensen. Verken lineære systemer generelt, og heller ikke finite impulsresponsystemer, må være årsakssammenhengende. Kausalitet er imidlertid praktisk for en slags analyse som skulle undersøke snart. Hvis vi symboliserer inngangene som verdier av en vektor x. og utgangene som tilsvarende verdier av en vektor y. så kan et slikt system skrives som hvor b-verdiene er quotweightsquot brukt på de nåværende og tidligere inngangssamplene for å få den nåværende utgangsprøven. Vi kan tenke på uttrykket som en ligning, med likestillingsbetegnelsen betyr lik, eller som en prosedyreinstruksjon, med likestillingsbetegnelsen. Lar oss skrive uttrykket for hver utgangseksempel som en MATLAB-sløyfe med oppgaveoppgavene, hvor x er en N-lengdevektor av inngangsprøver, og b er en M-lengdevektor av vekt. For å håndtere det spesielle tilfellet ved starten, vil vi legge inn x i en lengre vektor xhat hvis første M-1-prøver er null. Vi vil skrive den veide summasjonen for hver y (n) som et indre produkt, og vil gjøre noen manipulasjoner av inngangene (som reversering b) til dette formål. Denne typen system kalles ofte et bevegelig gjennomsnittsfilter av åpenbare årsaker. Fra våre tidligere diskusjoner bør det være åpenbart at et slikt system er lineært og skift-invariant. Selvfølgelig vil det være mye raskere å bruke MATLAB convolution-funksjonen conv () i stedet for vår mafilt (). I stedet for å vurdere de første M-1-prøvene av inngangen til å være null, kan vi betrakte dem til å være de samme som de siste M-1-prøvene. Dette er det samme som å behandle inngangen som periodisk. Vel bruk cmafilt () som navnet på funksjonen, en liten modifikasjon av den tidligere mafilt () - funksjonen. Ved å bestemme impulsresponsen til et system er det vanligvis ingen forskjell mellom disse to, siden alle ikke-første prøver av inngangen er null: Siden et slikt system er lineært og skift-invariant, vet vi at dets effekt på alle sinusoid vil bare være å skalere og skifte den. Her er det viktig at vi bruker den sirkulære versjonen Den sirkulært-konvolverte versjonen skiftes og skaleres litt, mens versjonen med vanlig konvolusjon er forvrengt i starten. Lar se hva den eksakte skaleringen og skiftingen er ved å bruke en fft: Både inngang og utgang har amplitude bare ved frekvenser 1 og -1, som er som det burde være, gitt at inngangen var en sinusformet og systemet var lineært. Utgangsverdiene er større med et forhold på 10,62518 1,3281. Dette er gevinsten til systemet. Hva med fasen Vi trenger bare å se hvor amplitude er ikke-null: Inngangen har en fase av pi2, som vi ba om. Utgangsfasen skiftes med ytterligere 1,0594 (med motsatt tegn for negativ frekvens), eller ca. 16 av en syklus til høyre, som vi kan se på grafen. Nå kan vi prøve en sinusoid med samme frekvens (1), men i stedet for amplitude 1 og fase pi2, kan vi prøve amplitude 1.5 og fase 0. Vi vet at bare frekvens 1 og -1 vil ha null null amplitude, så vi kan bare se på dem: Igjen er amplitudeforholdet (15.937712.0000) 1.3281 - og for fasen blir det igjen skiftet med 1.0594 Hvis disse eksemplene er typiske, kan vi forutsi effekten av vårt system (impulsrespons .1 .2 .3 .4 .5) på hvilken som helst sinusoid med frekvens 1 - amplituden vil bli økt med en faktor på 1,3281 og den (positive frekvens) fase vil bli forskyvet med 1,0594. Vi kunne fortsette å beregne effekten av dette systemet på sinusoider av andre frekvenser med samme metoder. Men det er en mye enklere måte, og en som etablerer det generelle punktet. Siden (sirkulær) konvolusjon i tidsdomenet betyr multiplikasjon i frekvensdomenet, følger det med at DFT av impulsresponsen med andre ord er forholdet mellom DFT for utgangen og DFT på inngangen. I dette forholdet er DFT-koeffisientene komplekse tall. Siden abs (c1c2) abs (c1) abs (c2) for alle komplekse tall c1, c2, forteller denne ligningen oss at amplitudespektret for impulsresponsen alltid vil være forholdet mellom amplitudespektret for utgangen og inngangen til inngangen . I tilfelle av fasespektret er vinkel (c1c2) vinkel (c1) - vinkel (c2) for alle c1, c2 (med den forutsetning at faser som er forskjellige med n2pi regnes like). Fasespektret for impulsresponsen vil derfor alltid være forskjellen mellom fasespekteret for utgangen og inngangen (med hvilke korrigeringer med 2pi som er nødvendig for å holde resultatet mellom - pi og pi). Vi kan se fasevirkningene tydeligere hvis vi pakker ut representasjonen av fase, dvs. hvis vi legger til flere multipler på 2pi etter behov for å minimere hoppene som er produsert av periodisk karakter av vinkelen () - funksjonen. Selv om amplitude og fase vanligvis brukes til grafisk og jevn tabellpresentasjon, da de er en intuitiv måte å tenke på effekten av et system på de forskjellige frekvenskomponentene i inngangen, er de komplekse Fourier-koeffisientene mer nyttige algebraisk, siden de tillater det enkle uttrykket for forholdet Den generelle tilnærmingen vi nettopp har sett vil fungere med vilkårlig filtre av typen skissert, hvor hver utgangseksempel er en vektet sum av et sett av inngangssampler. Som nevnt tidligere kalles disse ofte Finite Impulse Response-filtre, fordi impulsresponsen er av fin størrelse, eller noen ganger Flyttende gjennomsnittlig filtre. Vi kan bestemme frekvensresponsegenskapene til et slikt filter fra FFT av impulsresponsen, og vi kan også designe nye filtre med ønskede egenskaper ved IFFT fra en spesifikasjon av frekvensresponsen. Autoregressive (IIR) - filtre Det ville være lite poeng å ha navn på FIR-filtre, med mindre det var noe annet å skille dem fra, og så de som har studert pragmatikk, vil ikke bli overrasket over at det er en annen stor art av lineært tidsinvariant filter. Disse filtrene kalles noen ganger rekursive fordi verdien av tidligere utganger (samt tidligere innganger) betyr noe, selv om algoritmene generelt skrives ved hjelp av iterative konstruksjoner. De kalles også Infinite Impulse Response (IIR) filtre, fordi deres respons på impulser generelt går for alltid. De kalles også noen ganger autoregressive filtre, fordi koeffisientene kan tenkes som følge av å foreta lineær regresjon for å uttrykke signalverdier som en funksjon av tidligere signalverdier. Forholdet mellom FIR og IIR-filtre kan ses tydelig i en lineær konstant-koeffisientforskjellekvasjon, dvs. å sette en vektet sum av utganger som er lik en vektet sum av innganger. Dette er som ligningen som vi ga tidligere for årsakssystemet FIR-filter, bortsett fra at i tillegg til den vektede summen av innganger, har vi også en vektet sum av utganger. Hvis vi ønsker å tenke på dette som en prosedyre for å generere utgangseksempler, må vi omorganisere ligningen for å få et uttrykk for gjeldende utgangssprøve y (n), Vedta konvensjonen at a (1) 1 (f. eks. Ved å skalere andre som og bs), kan vi kvitte seg med 1a (1) termen: y (n) b (1) x (n) b (2) x (n-1). b (Nb1) x (n-nb) - a (2) y (n-1) -. - a (Na1) y (n-na) Hvis alle a (n) annet enn a (1) er null, reduseres dette til vår gamle venn, det kausale FIR-filteret. Dette er det generelle tilfellet av et (kausal) LTI filter, og implementeres av MATLAB-funksjonsfilteret. La oss se på tilfellet der b-koeffisientene bortsett fra b (1) er null (i stedet for FIR-tilfellet, hvor a (n) er null): I dette tilfellet beregnes nåværende utgangsprøve y (n) som en vektet kombinasjon av gjeldende inngangseksempel x (n) og tidligere utgangsprøver y (n-1), y (n-2) osv. For å få en ide om hva som skjer med slike filtre, kan vi starte med tilfellet hvor: Det vil si at den nåværende utgangsprøven er summen av gjeldende inngangseksempel og halvparten av den forrige utgangsprøven. Vel ta en inngangspuls gjennom noen få skritt, en om gangen. Det skal være klart på dette punktet at vi enkelt kan skrive et uttrykk for nth utgangsprøveverdien: det er bare (Hvis MATLAB telles fra 0, ville dette bare være .5n). Siden det vi beregner er impulsresponsen til systemet, har vi vist ved eksempel at impulsresponsen faktisk kan ha uendelig mange ikke-nullprøver. For å implementere dette trivielle førstegangsfilteret i MATLAB kunne vi bruke filter. Samtalen vil se slik ut: og resultatet er: Er denne virksomheten virkelig fortsatt lineær? Vi kan se på dette empirisk: For en mer generell tilnærming, vurder verdien av en utgangseksempel y (n). Ved suksessiv substitusjon kan vi skrive dette som: Dette er akkurat som vår gamle venn, sammenkallings-summen av et FIR-filter, med impulsresponsen gitt av uttrykket .5k. og lengden på impulsresponsen er uendelig. Dermed de samme argumentene som vi pleide å vise at FIR-filtre var lineære, vil nå gjelde her. Så langt kan dette virke som mye oppstyr om ikke mye. Hva er denne hele undersøkelsesgruppen god for Vel, svar på dette spørsmålet i faser, med utgangspunkt i et eksempel. Det er ikke en stor overraskelse at vi kan beregne en samplet eksponensiell ved rekursiv multiplikasjon. La oss se på et rekursivt filter som gjør noe mindre tydelig. Denne gangen gjør du det til et andreordfilter, slik at anropet til filteret vil være av skjemaet. Lets angi den andre utgangskoeffisienten a2 til -2cos (2pi40), og den tredje utgangskoeffisienten a3 til 1, og se på impulsen respons. Ikke veldig nyttig som et filter, men det genererer en samplet sinusbølge (fra en impuls) med tre multipliser-adds per prøve. For å forstå hvordan og hvorfor det gjør dette, og hvordan rekursive filtre kan utformes og analyseres i Jo mer generelt, vi må gå tilbake og ta en titt på noen andre egenskaper av komplekse tall, på vei til å forstå z transformasjonen. Gjennomsnittlig gjennomsnitt Gjennomsnittlig verdi Med konvensjonelle datasett er gjennomsnittlig verdi ofte den første og en av mest nyttige, sammendragsstatistikk for å beregne. Når data er i form av en tidsserie, er seriemengden et nyttig mål, men reflekterer ikke dataens dynamiske natur. Gjennomsnittlige verdier som beregnes over kortere perioder, enten før den nåværende perioden eller sentrert i den nåværende perioden, er ofte mer nyttige. Fordi slike middelverdier vil variere, eller flytte, som den nåværende perioden beveger seg fra tid t 2, t 3. etc. er de kjent som bevegelige gjennomsnitt (Mas). Et enkelt glidende gjennomsnitt er (typisk) det uveide gjennomsnittet av k tidligere verdier. Et eksponentielt vektet glidende gjennomsnitt er i det vesentlige det samme som et enkelt glidende gjennomsnitt, men med bidrag til gjennomsnittet vektet av deres nærhet til gjeldende tid. Fordi det ikke er en, men en hel rekke bevegelige gjennomsnittsverdier for en gitt serie, kan settet Mas selv bli plottet på grafer, analysert som en serie, og brukes til modellering og prognoser. En rekke modeller kan bygges ved hjelp av bevegelige gjennomsnitt, og disse er kjent som MA-modeller. Hvis slike modeller er kombinert med autoregressive (AR) modeller, er de resulterende komposittmodellene kjent som ARMA - eller ARIMA-modeller (jeg er for integrert). Enkle bevegelige gjennomsnitt Siden en tidsserie kan betraktes som et sett med verdier, kan t 1,2,3,4, n gjennomsnittet av disse verdiene beregnes. Hvis vi antar at n er ganske stor, og vi velger et heltall k som er mye mindre enn n. vi kan beregne et sett med blokk gjennomsnitt eller enkle bevegelige gjennomsnitt (av rekkefølge k): Hvert mål representerer gjennomsnittet av dataverdiene over et intervall av k observasjoner. Merk at den første mulige MA for ordre k gt0 er den for t k. Mer generelt kan vi slippe det ekstra abonnementet i uttrykkene ovenfor og skrive: Dette sier at estimert gjennomsnitt på tidspunktet t er det enkle gjennomsnittet av den observerte verdien ved tid t og de foregående k -1-trinnene. Hvis det legges vekt på som reduserer bidraget til observasjoner som er lengre bort i tiden, sies det glidende gjennomsnittet å være eksponensielt jevnt. Flytende gjennomsnitt blir ofte brukt som en form for prognoser, hvorved estimert verdi for en serie på tiden t 1, S t1. er tatt som MA for perioden til og med tiden t. f. eks dagens estimat er basert på et gjennomsnitt av tidligere registrerte verdier fram til og med gårdager (for daglige data). Enkle bevegelige gjennomsnitt kan ses som en form for utjevning. I eksemplet som er vist nedenfor, er luftforurensningsdatasettet vist i introduksjonen til dette emnet blitt utvidet med en 7-dagers glidende gjennomsnittlig (MA) - linje, vist her i rødt. Som det ser ut, jevner MA-linjen ut toppene og troughene i dataene og kan være svært nyttig når det gjelder å identifisere trender. Standard forward-beregning formel betyr at de første k -1 datapunktene ikke har noen MA-verdi, men deretter utvider beregningene til det endelige datapunktet i serien. PM10 daglige gjennomsnittsverdier, Greenwich kilde: London Air Quality Network, londonair. org. uk En grunn til å beregne enkle bevegelige gjennomsnitt på måten som er beskrevet er at det gjør det mulig å beregne verdier for alle tidsluker fra tid tk frem til i dag, og Som en ny måling er oppnådd for tid t 1, kan MA for tid t 1 legges til settet som allerede er beregnet. Dette gir en enkel prosedyre for dynamiske datasett. Det er imidlertid noen problemer med denne tilnærmingen. Det er rimelig å argumentere for at gjennomsnittsverdien i løpet av de siste 3 periodene skal være plassert ved tidspunktet t -1, ikke tiden t. og for en MA over et jevnt antall perioder, bør det kanskje ligge midt mellom to tidsintervaller. En løsning på dette problemet er å bruke sentrale MA beregninger, der MA på tidspunktet t er gjennomsnittet av et symmetrisk sett med verdier rundt t. Til tross for det åpenbare meritter, er denne tilnærmingen ikke vanligvis brukt fordi det krever at data er tilgjengelig for fremtidige hendelser, noe som kanskje ikke er tilfelle. I tilfeller der analysen er helt av en eksisterende serie, kan bruk av sentrert Mas være å foretrekke. Enkle bevegelige gjennomsnitt kan betraktes som en form for utjevning, fjerne noen høyfrekvente komponenter i en tidsserie og markere (men ikke fjerne) trender på samme måte som det generelle begrepet digital filtrering. Faktisk er glidende gjennomsnitt en form for lineært filter. Det er mulig å bruke en bevegelig gjennomsnittsberegning til en serie som allerede har blitt utjevnet, dvs. utjevning eller filtrering av en allerede glatt serie. For eksempel, med et bevegelige gjennomsnitt på rekkefølge 2, kan vi betrakte det som beregnet ved hjelp av vekter, så MA ved x 2 0,5 x 1 0,5 x 2. På samme måte MA på x 3 0,5 x 2 0,5 x 3. Hvis vi bruk et andre nivå av utjevning eller filtrering, vi har 0,5 x 2 0,5 x 3 0,5 (0,5 x 2 0,5 x 3) 0,25 x 1 0,5 x 2 0,25 x 3 dvs. 2-trinns filtrering prosess (eller convolution) har produsert et variabelt vektet symmetrisk glidende gjennomsnitt, med vekter. Flere konvolutter kan produsere ganske komplekse vektede glidende gjennomsnitt, hvorav noen har blitt funnet å være særlig bruk i spesialiserte felt, som for eksempel i livsforsikringsberegninger. Flytte gjennomsnitt kan brukes til å fjerne periodiske effekter dersom det beregnes med periodikkets lengde som kjent. For eksempel, med månedlige data kan sesongvariasjoner ofte fjernes (hvis dette er målet) ved å bruke et symmetrisk 12-måneders glidende gjennomsnitt med alle månedene vektet like, bortsett fra det første og det siste som veies med 12. Dette skyldes at det vil være 13 måneder i den symmetriske modellen (nåværende tid, t. - 6 måneder). Summen er delt med 12. Lignende prosedyrer kan vedtas for en veldefinert periodicitet. Eksponentielt vektede glidende gjennomsnitt (EWMA) Med den enkle glidende gjennomsnittsformelen: Alle observasjoner er likevektede. Hvis vi kalte disse likevektene, alfa t. hver av k-vekter vil være lik 1 k. så summen av vektene ville være 1, og formelen ville være: Vi har allerede sett at flere applikasjoner av denne prosessen resulterer i at vektene varierer. Med eksponentielt vektede glidende gjennomsnitt blir bidraget til middelverdien fra observasjoner som er fjernet i tid, redusert, og derved legges vekt på nyere (lokale) hendelser. I hovedsak er en utjevningsparameter, 0lt al1l, introdusert, og formelen er revidert til: En symmetrisk versjon av denne formelen vil være av formen: Hvis vektene i den symmetriske modellen er valgt som betingelsene i betingelsene for binomial ekspansjonen, (1212) 2q. de vil summe til 1, og når q blir stor, vil omtrentlig normalfordelingen. Dette er en form for kjernevikting, med binomialet som kjernefunksjon. Den to-trinns konvolusjon som er beskrevet i det foregående avsnitt er nettopp dette arrangementet, med q 1, som gir vekter. Ved eksponensiell utjevning er det nødvendig å bruke et sett med vekter som summerer til 1 og som reduserer størrelsen geometrisk. Vektene som brukes er vanligvis av skjemaet: For å vise at disse vektene summerer til 1, vurder utvidelsen av 1 som en serie. Vi kan skrive og utvide uttrykket i parentes ved hjelp av binomialformelen (1- x) s. hvor x (1-) og p -1, som gir: Dette gir da en form for vektet glidende gjennomsnitt av skjemaet: Denne summeringen kan skrives som en tilbakevendingsrelasjon: som forenkler beregningen sterkt og unngår problemet at vektingsregimet bør strengt være uendelig for vektene til summen til 1 (for små verdier av alfa. dette er vanligvis ikke tilfelle). Notasjonen som brukes av ulike forfattere varierer. Noen bruker bokstaven S for å indikere at formelen er i hovedsak en glatt variabel, og skriv: mens kontrollteori litteraturen ofte bruker Z i stedet for S for eksponentielt vektede eller jevnte verdier (se for eksempel Lucas og Saccucci, 1990, LUC1 , og NIST-nettsiden for flere detaljer og arbeidede eksempler). Formlene som er nevnt ovenfor kommer fra Roberts arbeid (1959, ROB1), men Hunter (1986, HUN1) bruker et uttrykk for formen: som kan være mer hensiktsmessig for bruk i noen kontrollprosedyrer. Med alfa 1 er gjennomsnittlig estimering bare dens målte verdi (eller verdien av forrige datapost). Med 0,5 er estimatet det enkle glidende gjennomsnittet for nåværende og tidligere målinger. I prognosemodellene er verdien S t. brukes ofte som estimat eller prognoseverdi for neste tidsperiode, det vil si som estimatet for x på tidspunktet t 1. Dermed har vi: Dette viser at prognosen på tidspunktet t 1 er en kombinasjon av det forrige eksponentielt veide glidende gjennomsnittet pluss en komponent som representerer den veide prediksjonsfeilen, epsilon. på tidspunktet t. Forutsatt at en tidsserie er gitt og det kreves en prognose, er det nødvendig med en verdi for alfa. Dette kan estimeres fra eksisterende data ved å evaluere summen av kvadrert prediksjon feil oppnådd med varierende verdier av alfa for hver t 2,3. sette det første estimatet til å være den første observerte dataværdien, x 1. I kontrollapplikasjoner er verdien av alfa viktig, da den brukes til å bestemme de øvre og nedre kontrollgrensene, og påvirker den forventede gjennomsnittlige kjølelengde (ARL) før disse kontrollgrensene er brutt (under antagelsen om at tidsseriene representerer et sett av tilfeldige, identisk distribuerte uavhengige variabler med vanlig varians). Under disse forholdene er variansen av kontrollstatistikken: (Lucas og Saccucci, 1990): Kontrollgrenser settes vanligvis som faste multipler av denne asymptotiske variansen, f. eks. - 3 ganger standardavviket. Hvis f. eks. Alpha 0,25 og dataene som overvåkes antas å ha en Normal fordeling, N (0,1), når den er i kontroll, vil kontrollgrensene være - 1,134 og prosessen vil nå en eller annen grense i 500 trinn gjennomsnittlig. Lucas og Saccucci (1990 LUC1) utlede ARLene for et bredt spekter av alfaverdier og under ulike forutsetninger ved bruk av Markov Chain-prosedyrer. De tabulerer resultatene, inkludert å gi ARLer når gjennomsnittet av kontrollprosessen har blitt forskjøvet med noen flere av standardavviket. For eksempel, med en 0,5 skift med alfa 0,25 er ARL mindre enn 50 timers trinn. Tilnærmingene beskrevet ovenfor er kjent som enkelt eksponensiell utjevning. ettersom prosedyrene blir brukt en gang til tidsserien, og deretter utføres analyser eller kontrollprosesser på det resulterende glatte datasettet. Hvis datasettet inneholder en trend og sesongkomponenter, kan to - eller tre-trinns eksponensiell utjevning brukes som et middel til å fjerne (eksplisitt modellering) disse effektene (se videre avsnittet om prognose nedenfor og NIST-arbeidet). CHA1 Chatfield C (1975) Analyse av Times Series: Teori og praksis. Chapman og Hall, London HUN1 Hunter J S (1986) Det eksponentielt vektede glidende gjennomsnittet. J of Quality Technology, 18, 203-210 LUC1 Lucas J M, Saccucci M S (1990) Eksponentielt vektede Flytte Gjennomsnittlige kontrollsystemer: Egenskaper og forbedringer. Technometrics, 32 (1), 1-12 ROB1 Roberts S W (1959) Kontrolldiagramtester basert på geometriske bevegelige gjennomsnitt. Technometrics, 1, 239-250Moving Average Filter Du kan bruke modulen Moving Average Filter til å beregne en serie ensidige eller tosidige gjennomsnitt over et datasett, ved hjelp av en vindulengde du angir. Når du har definert et filter som oppfyller dine behov, kan du bruke det til utvalgte kolonner i et datasett ved å koble det til modulet Apply Filter. Modulen gjør alle beregningene og erstatter verdier i numeriske kolonner med tilsvarende bevegelige gjennomsnitt. Du kan bruke det resulterende glidende gjennomsnittet for plotting og visualisering, som en ny, jevn basislinje for modellering, for å beregne avvik i forhold til beregninger for lignende perioder, og så videre. Denne typen gjennomsnitt hjelper deg med å avsløre og prognostisere nyttige temporale mønstre i retrospektiv og sanntidsdata. Den enkleste typen glidende gjennomsnitt starter ved noen utvalg av serien, og bruker gjennomsnittet av den posisjonen pluss de forrige n-stillingene i stedet for den faktiske verdien. (Du kan definere n som du vil.) Jo lengre perioden n over hvilken gjennomsnittet beregnes, jo mindre varians vil du ha blant verdier. Også, ettersom du øker antallet verdier som brukes, har den mindre effekten en enkelt verdi har på det resulterende gjennomsnittet. Et glidende gjennomsnitt kan være ensidig eller tosidig. I et ensidig gjennomsnitt brukes bare verdier som går før indeksverdien. I et tosidig gjennomsnitt brukes tidligere og fremtidige verdier. For scenarier der du leser streamingdata, er kumulative og veide glidende gjennomsnitt spesielt nyttige. Et kumulativt glidende gjennomsnitt tar hensyn til punktene som går før gjeldende periode. Du kan vekt alle datapunkter likt når du beregner gjennomsnittet, eller du kan sikre at verdiene nærmere det nåværende datapunktet veies sterkere. I et vektet glidende gjennomsnitt. alle vekter må summe til 1. I et eksponentielt glidende gjennomsnitt. gjennomsnittene består av et hode og en hale. som kan vektes. En lettvektet hale betyr at halen følger hodet ganske tett, slik at gjennomsnittet oppfører seg som et glidende gjennomsnitt på en kortvektsperiode. Når halevektene er tyngre, opptrer gjennomsnittet mer som et lengre, enkelt, glidende gjennomsnitt. Legg til modulen Moving Average Filter til eksperimentet ditt. For lengde. skriv inn en positiv hele tallverdien som definerer den totale størrelsen på vinduet over hvilket filteret blir brukt. Dette kalles også filtermasken. For et glidende gjennomsnitt, bestemmer lengden på filteret hvor mange verdier som er i gjennomsnitt i glidevinduet. Lengre filtre kalles også høyere rekkefiltre, og gir et større beregningsvindu og en nærmere tilnærming av trendlinjen. Kortere eller lavere rekkefiltre bruker et mindre beregningsvindu og ligner mer opprinnelig dataene. For Type. velg hvilken type glidende gjennomsnitt som skal gjelde. Azure Machine Learning Studio støtter følgende typer bevegelige gjennomsnittlige beregninger: Et enkelt glidende gjennomsnitt (SMA) beregnes som et uvevet rullende middel. Triangulære glidende gjennomsnitt (TMA) er gjennomsnittlig to ganger for en jevnere trendlinje. Ordet trekantet er avledet fra formen av vektene som er brukt på dataene, som legger vekt på sentrale verdier. Et eksponentielt glidende gjennomsnitt (EMA) gir mer vekt til de nyeste dataene. Vektingen faller eksponentielt ut. Et modifisert eksponentielt glidende gjennomsnitt beregner et løpende glidende gjennomsnitt, hvor beregning av glidende gjennomsnitt på et hvilket som helst punkt vurderer det tidligere beregnede glidende gjennomsnittet på alle forrige punkter. Denne metoden gir en jevnere trendlinje. Gitt et enkelt punkt og et nåværende bevegelige gjennomsnitt beregner det kumulative glidende gjennomsnittet (CMA) det bevegelige gjennomsnittet på nåværende punkt. Legg til datasettet som har verdiene du vil beregne et glidende gjennomsnitt for, og legg til Bruk filter-modulen. Koble det bevegelige gjennomsnittsfilteret til venstre inngang på Apply Filter. og koble datasettet til høyre inngang. I kolonnen Aktiver bruker du kolonnevelgeren for å angi hvilke kolonner filteret skal brukes på. Som standard vil filteret du oppretter, bli brukt på alle numeriske kolonner, så vær sikker på å ekskludere noen kolonner som ikke har passende data. Kjør eksperimentet. På det tidspunktet for hvert sett av verdier som er definert av filterlengdesparameteren, erstattes gjeldende (eller indeks) verdien med den bevegelige gjennomsnittsverdien. Hva er forskjellen mellom bevegelige gjennomsnittlige og veide glidende gjennomsnittlige 5-års glidende gjennomsnitt, basert på Prisene over, ville bli beregnet ved hjelp av følgende formel: Basert på ligningen ovenfor var gjennomsnittsprisen over perioden som var oppført ovenfor 90,66. Bruk av bevegelige gjennomsnitt er en effektiv metode for å eliminere sterke prisfluktuasjoner. Nøkkelbegrensningen er at datapunkter fra eldre data ikke veier noe annerledes enn datapunkter nær begynnelsen av datasettet. Dette er hvor vektede glidende gjennomsnitt kommer til spill. Veidede gjennomsnitt gir tyngre vekting til mer gjeldende datapunkter siden de er mer relevante enn datapunkter i den fjerne fortiden. Summen av vektingen skal legge til opptil 1 (eller 100). Når det gjelder det enkle glidende gjennomsnittet, er vektene fordelt like mye, og derfor er de ikke vist i tabellen ovenfor. Sluttpris på AAPL
No comments:
Post a Comment