Wednesday, 18 October 2017

6 Måneders Enkel Moving Average


Flytende gjennomsnitt Dette eksemplet lærer deg hvordan du beregner det bevegelige gjennomsnittet av en tidsserie i Excel. Et glidende gjennomsnitt brukes til å utjevne uregelmessigheter (topper og daler) for enkelt å gjenkjenne trender. 1. Først, ta en titt på vår tidsserie. 2. På Data-fanen klikker du Dataanalyse. Merk: kan ikke finne dataanalyseknappen Klikk her for å laste inn add-in for Analysis ToolPak. 3. Velg Flytt gjennomsnitt og klikk OK. 4. Klikk i feltet Inngangsområde og velg området B2: M2. 5. Klikk i intervallboksen og skriv inn 6. 6. Klikk i feltet Utmatingsområde og velg celle B3. 8. Skriv en graf av disse verdiene. Forklaring: fordi vi angir intervallet til 6, er glidende gjennomsnitt gjennomsnittet for de forrige 5 datapunktene og det nåværende datapunktet. Som et resultat blir tinder og daler utjevnet. Grafen viser en økende trend. Excel kan ikke beregne det bevegelige gjennomsnittet for de første 5 datapunktene fordi det ikke er nok tidligere datapunkter. 9. Gjenta trinn 2 til 8 for intervall 2 og intervall 4. Konklusjon: Jo større intervallet jo flere tinder og daler utjevnes. Jo mindre intervallet, jo nærmere de bevegelige gjennomsnittene er de faktiske datapunktene. Simple Moving Average - SMA BREAKING DOWN Enkel Flytende Gjennomsnitt - SMA Et enkelt bevegelige gjennomsnitt er tilpassbart ved at det kan beregnes for et annet antall tidsperioder, bare ved å legge til sluttkursen for sikkerheten for en rekke tidsperioder og deretter dele denne summen med antall tidsperioder, noe som gir gjennomsnittsprisen på sikkerheten over tidsperioden. Et enkelt glidende gjennomsnitt svekker ut volatiliteten, og gjør det enklere å se prisutviklingen av et sikkerhetssystem. Hvis det enkle glidende gjennomsnittet peker opp, betyr dette at sikkerhetsprisen øker. Hvis det peker ned, betyr det at sikkerhetsprisen faller. Jo lengre tidsramme for glidende gjennomsnitt, jo glattere det enkle glidende gjennomsnittet. Et kortere glidende gjennomsnitt er mer volatilt, men lesingen er nærmere kildedataene. Analytisk betydning Flytende gjennomsnitt er et viktig analytisk verktøy som brukes til å identifisere dagens prisutvikling og potensialet for endring i en etablert trend. Den enkleste formen av å bruke et enkelt bevegelige gjennomsnitts i analyse, bruker det til å raskt identifisere om en sikkerhet er i en opptrinn eller nedtrengning. Et annet populært, om enn litt mer komplekst analytisk verktøy, er å sammenligne et par enkle bevegelige gjennomsnitt med hver dekning forskjellige tidsrammer. Hvis et kortere sikt enkelt glidende gjennomsnitt er over et langsiktig gjennomsnitt, forventes en opptrend. På den annen side signalerer et langsiktig gjennomsnitt over et kortere sikt gjennomsnitt en nedadgående bevegelse i trenden. Populære handelsmønstre To populære handelsmønstre som bruker enkle bevegelige gjennomsnitt inkluderer dødskrysset og et gyldent kors. Et dødskors oppstår når 50-dagers enkelt glidende gjennomsnitt krysser under 200-dagers glidende gjennomsnitt. Dette betraktes som et bearish signal, at ytterligere tap er i butikk. Gullkorset oppstår når et kortsiktig glidende gjennomsnitt bryter over et langsiktig glidende gjennomsnitt. Forsterket av høye handelsvolumer, kan dette signalere ytterligere gevinster i butikken. Gjennomsnittlig gjennomsnitt: Hva er de Blant de mest populære tekniske indikatorene, er glidende gjennomsnitt brukt til å måle retningen for den nåværende trenden. Hver type bevegelige gjennomsnitt (vanligvis skrevet i denne opplæringen som MA) er et matematisk resultat som beregnes ved å beregne et antall tidligere datapunkter. Når det er bestemt, blir det resulterende gjennomsnittet plottet på et diagram for å tillate handelsmenn å se på glatt data, i stedet for å fokusere på de daglige prisfluktuasjonene som er iboende i alle finansmarkeder. Den enkleste formen for et bevegelige gjennomsnitt, riktig kjent som et enkelt glidende gjennomsnitt (SMA), beregnes ved å ta det aritmetiske gjennomsnittet av et gitt sett av verdier. For eksempel, for å beregne et grunnleggende 10-dagers glidende gjennomsnitt vil du legge til sluttkursene fra de siste 10 dagene, og deretter dele resultatet med 10. I figur 1 er summen av prisene for de siste 10 dagene (110) dividert med antall dager (10) for å komme fram til 10-dagers gjennomsnittet. Hvis en forhandler ønsker å se et 50-dagers gjennomsnitt i stedet, vil samme type beregning bli gjort, men det vil inkludere prisene i løpet av de siste 50 dagene. Det resulterende gjennomsnittet under (11) tar hensyn til de siste 10 datapunktene for å gi handelsmenn en ide om hvordan en eiendel er priset i forhold til de siste 10 dagene. Kanskje du lurer på hvorfor tekniske handelsfolk kaller dette verktøyet et bevegelige gjennomsnitt og ikke bare en vanlig gjennomsnitt. Svaret er at når nye verdier blir tilgjengelige, må de eldste datapunktene slippes fra settet og nye datapunkter må komme inn for å erstatte dem. Dermed går datasettet kontinuerlig til å regne for nye data etter hvert som det blir tilgjengelig. Denne beregningsmetoden sikrer at bare den nåværende informasjonen blir regnskapsført. I figur 2 flyttes den røde boksen (som representerer de siste 10 datapunktene) til høyre, og den siste verdien av 15 blir tapt fra beregningen når den nye verdien av 5 er lagt til settet. Fordi den relativt små verdien av 5 erstatter den høye verdien på 15, ville du forvente å se gjennomsnittet av datasettets reduksjon, som det gjør, i dette tilfellet fra 11 til 10. Hva ser Moving Averages Like Når verdiene til MA har blitt beregnet, de er plottet på et diagram og deretter koblet til for å skape en bevegelig gjennomsnittslinje. Disse svingete linjene er vanlige på diagrammer av tekniske handelsfolk, men hvordan de brukes kan variere drastisk (mer om dette senere). Som du kan se i figur 3, er det mulig å legge til mer enn ett glidende gjennomsnitt i et diagram ved å justere antall tidsperioder som brukes i beregningen. Disse svingete linjene kan virke distraherende eller forvirrende i begynnelsen, men du vil bli vant til dem når tiden går videre. Den røde linjen er bare gjennomsnittsprisen de siste 50 dagene, mens den blå linjen er gjennomsnittsprisen de siste 100 dagene. Nå som du forstår hva et glidende gjennomsnitt er, og hvordan det ser ut, kan du godt presentere en annen type glidende gjennomsnitt og undersøke hvordan det er forskjellig fra det tidligere nevnte enkle glidende gjennomsnittet. Det enkle glidende gjennomsnittet er ekstremt populært blant handelsfolk, men som alle tekniske indikatorer har det kritikere. Mange individer hevder at bruken av SMA er begrenset fordi hvert punkt i dataserien vektes det samme, uavhengig av hvor det forekommer i sekvensen. Kritikere hevder at de nyeste dataene er mer signifikante enn de eldre dataene, og bør ha større innflytelse på sluttresultatet. Som svar på denne kritikken begynte handelsmenn å gi mer vekt på nyere data, som siden har ført til oppfinnelsen av ulike typer nye gjennomsnitt, hvorav den mest populære er det eksponentielle glidende gjennomsnittet (EMA). (For videre lesing, se Grunnleggende om vektede bevegelige gjennomsnitt og hva som er forskjellen mellom en SMA og en EMA) Eksponentiell flytende gjennomsnitt Det eksponentielle glidende gjennomsnittet er en type bevegelige gjennomsnitt som gir mer vekt til de siste prisene i et forsøk på å gjøre det mer responsivt til ny informasjon. Å lære den noe kompliserte ligningen for å beregne en EMA kan være unødvendig for mange forhandlere, siden nesten alle kartleggingspakker gjør beregningene for deg. Men for deg matematiske geeks der ute, her er EMA-ligningen: Når du bruker formelen til å beregne det første punktet til EMA, kan det hende du merker at det ikke er noen verdi tilgjengelig for bruk som den forrige EMA. Dette lille problemet kan løses ved å starte beregningen med et enkelt glidende gjennomsnitt og fortsette videre med den ovennevnte formelen derfra. Vi har gitt deg et eksempelkart som inneholder virkelige eksempler på hvordan du kan beregne både et enkelt glidende gjennomsnitt og et eksponentielt glidende gjennomsnitt. Forskjellen mellom EMA og SMA Nå som du har en bedre forståelse av hvordan SMA og EMA beregnes, kan vi se på hvordan disse gjennomsnittene er forskjellige. Ved å se på beregningen av EMA, vil du legge merke til at det legges større vekt på de siste datapunktene, noe som gjør det til en type vektet gjennomsnitt. I figur 5 er antall tidsperioder som brukes i hvert gjennomsnitt identisk (15), men EMA reagerer raskere på de endrede prisene. Legg merke til hvordan EMA har en høyere verdi når prisen stiger, og faller raskere enn SMA når prisen senker. Denne responsen er den viktigste grunnen til at mange handelsmenn foretrekker å bruke EMA over SMA. Hva betyr de forskjellige dagene Gjennomsnittlig flytteverdi er en helt tilpassbar indikator, noe som betyr at brukeren fritt kan velge hvilken tidsramme de vil ha når man lager gjennomsnittet. De vanligste tidsperioder som brukes i bevegelige gjennomsnitt er 15, 20, 30, 50, 100 og 200 dager. Jo kortere tidsrammen som brukes til å skape gjennomsnittet, jo mer følsomt blir det for prisendringer. Jo lengre tidsrom, jo ​​mindre følsomt, eller mer utjevnet, vil gjennomsnittet være. Det er ingen riktig tidsramme som skal brukes når du oppretter dine bevegelige gjennomsnitt. Den beste måten å finne ut hvilken som passer best for deg, er å eksperimentere med en rekke forskjellige tidsperioder til du finner en som passer til din strategi. Thomas Bulkowski8217s vellykkede investeringsaktiviteter tillot ham å gå på pensjon i alder 36 år. Han er en internasjonalt kjent forfatter og næringsdrivende med 30 års aksjemarkedserfaring og allment ansett som en ledende ekspert på diagrammønstre. Han kan nås på Støtte denne siden Ved å klikke på linkene (nedenfor) tar du deg til Amazon. Hvis du kjøper noe, betaler de for henvisningen. Bulkowskis 12-måneders flytende gjennomsnitt Skrevet av og copyright kopi 2005-2017 av Thomas N. Bulkowski. Alle rettigheter reservert. Ansvarsfraskrivelse: Du alene er ansvarlig for dine investeringsbeslutninger. Se PrivacyDisclaimer for mer informasjon. Denne artikkelen diskuterer hvordan du bruker 12-måneders glidende gjennomsnitt for å oppdage oksen og bjørnmarkedet. 12-måneders flytende gjennomsnittlig innledning På bildet over er et linjediagram over månedlige sluttkurser for SampP 500-indeksen, sammen med et 12 måneders glidende gjennomsnitt av disse stengene (vist i rødt). Legg merke til at i begynnelsen av bæremarkedet 2000 til 2002, gikk indeksen under det glidende gjennomsnittet på A. Det var et signal om å selge og flytte til kontanter. I bæremarkedet 2007 til 2009 falt indeksen også under glidende gjennomsnitt (ved B). I begge tilfeller var indeksen under det bevegelige gjennomsnittet før gjenopprettingen begynte på C og D. Hvis du skulle bruke 10-måneders glidende gjennomsnitt i stedet for 12, ville prisen gjennomsyre gjennomsnittet i den blå sirkelen og også langs CB Flytt ved første berøring. De ville ha forårsaket en unødvendig transaksjon (kjøp så selg eller omvendt), så et 12 måneders enkelt glidende gjennomsnitt fungerer bedre. Det litt lengre enkle glidende gjennomsnittet får deg tilbake til markedet litt senere på C og D enn det 10 måneders enkle glidende gjennomsnittet. Hvis du skulle teste dette, må du sørge for at du bruker månedlige sluttpriser og ikke høyder eller nedturer i løpet av måneden. Du finner at det bevegelige gjennomsnittet reduserer nedtrekk og risiko over kjøp og hold. 12-måneders Moving Average Trading Rules Her er handelsreglene. Kjøp inn på markedet når SampP 500-indeksen stiger over det 12 måneders enkle glidende gjennomsnittet av sluttkursene. Selg når indeksen faller under glidende gjennomsnitt. 12-måneders flytende gjennomsnittsprøving Jeg spurte Dr. Tom Helget om å kjøre en simulering på SampP 500-indeksen fra januar 1950 til mars 2010. Tabellen nedenfor viser en del av resultatene hans. Her er hva han sier om testen. Min test løp fra 131950 til 3312010 (20.515 dager eller 56.17 år) på GSPC. Handler ble tatt når lukkingen krysset over n-perioden, månedlig enkelt glidende gjennomsnitt på åpent dagen etter signalet. Posisjoner ble sluppet når lukkingen krysset under samme n-periode, enkelt glidende gjennomsnitt på åpent dagen etter signalet. Jeg tillot at fraksjonelle aksjer blir kjøpt. Min startverdi var 100. Perioder av det månedlige enkle glidende gjennomsnittet varierte fra 6 til 14. Optimalisering viste den beste ytelsen til å være den 12-måneders SMA med en sammenliknet årlig retur på 7,15. Hvis man skulle kjøpe på 1291954 (datoen for den første handelen generert av systemet) og holde til sluttdatoen, ville CAR ha vært 7.36. Du kan laste ned en kopi av regnearkresultatene sine ved å klikke på linken. Skrevet av og copyright copy 2005-2017 av Thomas N. Bulkowski. Alle rettigheter reservert. Ansvarsfraskrivelse: Du alene er ansvarlig for dine investeringsbeslutninger. Se PrivacyDisclaimer for mer informasjon. Mannen er den beste datamaskinen vi kan legge ombord på et romfartøy, og den eneste som kan bli masseprodusert med ufaglært arbeidskraft.

No comments:

Post a Comment